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Abstract: The authors demonstrate through numerical simulation and experimental measurement
that a polyplanar scan geometry consisting of a flat-topped pyramid provides a possible solution to
the measurement of high-gain antenna patterns in the forward hemisphere using a planar scanner
of size of order 1.5 times the size of the radiating aperture. The importance of correctly determining
the normal field component for each partial scan data set is demonstrated and a new auxiliary
rotation near-field to far-field transform algorithm is proposed. Additionally it is shown
experimentally that by enclosing a medium-gain antenna (e.g. a corrugated horn) within a scan
geometry formed by an imaginary box and measuring the near field on all six sides of the box using
a suitable rotation of the AUT, a prediction of the full spherical radiation pattern of the antenna
can be obtained.

1 Introduction

It is well known that far-field antenna parameters such as
pattern, gain, directivity, beamwidth, etc., can be derived
using an analytical transformation from measurements
taken in the near field [1]. This can be accomplished by
representing the field at an arbitrary point in space as an
integral over the surface on which the fields are known [2].
Alternatively, considerable computational advantages can
be obtained by representing the field as a summation of any
elementary wave solutions to Maxwell’s equations [3]. Here
the coefficients to these solutions are determined by
matching the fields on the surface on which the fields are
known and by using mode orthogonality. Solving this
modal expansion for the fields at an infinite distance from
the radiator results in the far-field pattern. A degree of
mathematical convenience can be obtained from selecting a
modal basis that matches the measurement geometry, i.e. by
utilising plane waves for the case where the measurements
are taken over a planar surface.

The principal factors in determining the complexity of the
near-field to far-field transformation are: the probe
directivity pattern correction, the extent of the truncation
of the data, the geometry of the surface over which the near
field is sampled, and its associated orthogonal modal basis.
For the case of the planar near-field methodology, if the
forward hemisphere is to be determined exactly, even in the
case of a finite aperture, the propagating field must be

sampled over a plane of infinite extent. The only exception
to this is the nonrealisable case of a finite aperture set in a
perfectly conducting ground plane that extends to infinity.
Here the sampling interval can collapse to the region of the
aperture provided that the samples are taken over a surface
that is coincident with the ground plane. In practice, due to
the finite extent of the scan plane any conventional planar
near-field measurement will inevitably represent a truncated
data set, and as such, any predicted far-field pattern would
include errors associated with this truncation. Furthermore,
the precise nature of this effect is complicated as a variation
in any part of the near-field pattern will necessarily, as a
consequence of the holistic nature of the transform, result in
a change to every part of the corresponding far-field
pattern. Importantly, it is the data that is transformed to
produce the far-field pattern that is required to be free from
excessive truncation. If this data is the product of the
combination of a number of partial data sets that, in
contrast to the single scan data set, fulfil the transformation
requirements in terms of sampling rate and continuity over
the sampling interval, then the prediction will be free from
truncation errors.

2 Auxiliary translation: conventional strategy

Hitherto the problem of truncation in near-field data
acquired over a planar surface has been partially addressed
by combining data sets that have been acquired via a series
of coplanar transforms, e.g. translations or rotations. The
primary truncation error determines the polar angle off
boresight out to which any far-field pattern can be predicted
from near-field measurements, while the secondary error
limits the extent to which the pattern within this angle can
be accurately predicted. The primary truncation error can
be expressed as the far-field angle of validity [4]

Az ¼ arctan
Lx � ax

2d

� �
ð1Þ

where Lx denotes the dimension of the scan plane, ax the
dimension of the antenna under test (AUT) and d is the
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separation between the scan plane and the antenna aperture
plane. Partial scans that can be combined to produce the
composite data set and will require that the position of the
AUT, relative to the scan plane, be spatially transformed
between scans so that the combined data set represents a
larger scan area than that actually available via a single
scan. Clearly, as the actual scan plane of the scanner is at a
fixed location it is the AUT that must undergo the spatial
transformation. Three common translations are: the AUT
is translated in the horizontal, i.e. x, direction between
partial scans; the AUT is translated in the horizontal and
vertical, i.e. x and y, directions between partial scans; and
the AUT is rotated about the normal to the scan plane,
i.e. z-axis, between partial scans. If the AUT can be
manipulated and repositioned with sufficient accuracy the
construction of the combined scans should not involve any
loss of accuracy. However, the positional accuracy of the
sampling points required to make successful measurements
is demanding, i.e. better than a fiftieth of a wavelength in
each of the triad of orthogonal directions. This means that
the movement of the AUT relative to the scan plane and
subsequently its repositioning with the required degree of
accuracy for a second or subsequent scan is not a trivial
task and requires specialist, potentially costly, precision
positioners.

Unfortunately, effective as these techniques undoubtedly
are, they necessarily involve spatial translations of the
antenna that are dependent on the additional availability of
a specialist precision antenna-positioning subsystem. Such
subsystems, with the ability to translate the antenna
accurately and with sufficient repeatability in a plane
tangential to that of the scanner, as a result of the antenna
translation occupy significantly large volumes. Additionally
the translation of the antenna involves the movement of
parts of the RF interference network of the measurement
systems, and this will introduce phase errors in the
measurements which must be either corrected or minimised.
These techniques essentially involve the extension of the size
of the existing scan plane by the systematic synthesis of a
composite data set from a combination of partial data sets
acquired via a series of coplanar translations and/or
rotations. However, this strategy, although it can signifi-
cantly improve the performance of the measurement facility
with a minimal increase in computational complexity, can
never entirely succeed since any finite number of transla-
tions or rotations can never synthesise a plane that is infinite
in extent.

3 Auxiliary rotation: basis of an alternative
strategy

Techniques for rigorously applying vector isometric rota-
tions to antenna patterns thereby correcting the measure-
ments of misaligned antennas readily offers the possibility
of producing antenna measurements based on partial scan
techniques that are not coplanar. By rotating the AUT
about one or more spatial axes that are not necessarily at a
normal to the scan plane and combining the partial scans it
is clearly possible to increase the angle of validity and level
of accuracy of a planar measurement. The Fig. 1a shows the
normal alignment and Fig. 1b the misalignment of an AUT
relative to the scan plane. For the case of the planar near-
field to far-field transformation the application of alignment
correction data is handled rigorously by expanding the
plane-wave spectrum on an irregular grid in the range co-
ordinate system (i.e. that system defined by the scan plane).
This irregular grid corresponds to a regular grid in the AUT

mechanical co-ordinate system (often taken to be a frame of
reference defined by the antenna aperture plane). With the
transformation of the measured cartesian field components
from the range polarisation basis into the AUT polarisation
basis the required isometric rotation is complete.

The probe pattern can be thought of as spatially filtering
the fields received from different parts of the AUT. In a
planar range, the effects include something similar to a
direct multiplication of the far-field probe pattern with the
far-field AUT pattern. This can be seen to be a direct result
of the nature of the convolution theorem [5] and can be
visualised directly from the mechanical operation of the
scanner. It is not usually possible to neglect these effects in
the planar range because of the large angles of validity
required and the short measurement distance employed, c.f.
expression for the angle of validity. Considerable care is
needed over which co-ordinate system and which field
components the probe convolution is understood to have
taken place in so that a rigorous deconvolution can be
applied. Thus an arbitrary but known probe orientation can
be accommodated within our transformation process.

The reconstruction of near-field data over a plane in
space other than the measurement plane is accomplished by
the application of a differential phase change. This can be
seen to be analogous to a defocusing of the far-field image.
Near-field data can then be readily reconstructed via the
application of a two-dimensional discrete inverse Fourier
transform. On this occasion there is no requirement for any
additional isometric transformations and as such all of the
usual numerical techniques for improving the efficiency of
the transformation can be utilised. This reconstructed plane
can be located at any of an infinite number of planes that
are in the region of space at, or in front of, the AUT’s phase
centre. It is when the fields are reconstructed at a plane that
is coincident with the AUT’s ‘aperture plane’ that this
process is of most utility. The antenna aperture can be
conveniently thought of as that surface in space which
represents the transition between the majority conduction
current and displacement current regions defined by the
presence of a charge distribution.

Alignment errors manifest themselves in different ways in
each domain. If the issues associated with polarisation are
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Fig. 1 Representation of aligned and misaligned antennas
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ignored then an error in the AUT to range alignment will
correspond to an angular displacement of the far-field
pattern. The same error will correspond to a change in the
nature of the near-field pattern that is not in general
characterised simply by a corresponding linear-phase taper.
The acquisition of alignment data is usually based upon the
premise of being able to measure the cartesian co-ordinates
of four points on the AUTmechanical interface plane in the
range co-ordinate system. From these four points we can
construct four normals, the average angles between each
can be used to indicate the degree of uncertainty in the
measurement of these points. The projection of each
cartesian component of the first system onto each cartesian
component of the second system determines the AUT-to-
range direction cosine matrix. For the case where there is a
suitable datum available on the antenna the roll angle can
be deduced from any of the edge vectors.

In principle these techniques are rigorous, but in practice
the integrity of the reconstructed near-field data is not
maintained. The source of this error which is propagated
through the entire procedure is related to the truncation
caused by the differences in the truncation of the measured
data sets due to the misalignment of the AUT. Although
the process is sufficiently robust to deal with a degree of
variation in the truncation of the measured data sets,
knowledge of the success of the correction at each stage of
the process is crucial. Previously [6] these techniques have
been verified by acquiring a low-gain standard-gain horn
(SGH) at a variety of different orientations with respect to
the range axes. However, the magnitude of the angles
through which the patterns were rotated within the
transformation process was much smaller that those
required by a typical auxiliary rotation system. Hence
further verification was required. Thus a planar array
antenna, shown in Fig. 2, operating at 9.0GHz was
acquired when aligned to the axes of the range and when
rotated in azimuth through 715 and 7301. These angles
were chosen as they are thought to be representative of the
angles required by typical auxiliary rotation systems. The
antenna-to-range alignment information was measured as
described, in each case and then used to correct each of the
near-field measurements.

These data sets were transformed to the far-field where
the radiation patterns were resolved onto a Ludwig III

vertical copolarisation and cross-polarisation basis and were
tabulated on a regular 151-by-151-element grid in an
azimuth over elevation coordinate system. Figure 3
illustrates the degree of agreement attained by presenting
the data in the form of overlaid isolevel, i.e. contour, plots
so that the differences are illustrated as clearly as possible.
Here the contours have been plotted that correspond to the
�60, �50, �40, �30, �20 and –10dB below peak level. A
different line-style is used for each data set, where the solid
black line is 01, dotted line is 151, dashed-dotted line is�151,
dotted line is 301 and grey solid line is �301 cases. These
patterns have been plotted out to 7401 in azimuth and
elevation so that the entire far-field data set should be free
from first-order truncation effects. Clearly, phenomena
associated with the second-order truncation effect remain
present within this angular region.

It can be seen that the results are encouraging, as the
differences between these far-field radiation patterns are
small and subtle in nature. The apparent similarity between
the plots suggests that the antenna to range alignment data
has been reliably determined and correctly applied. The
rigorous application of alignment correction is not limited
to that of the plane rectilinear co-ordinate system as these
techniques are readily extended to the plane polar and plane
bipolar acquisition geometries.

4 Polyplanar technique

Clearly, then, this introduces the possibility of constructing
bespoke polyhedral measurement surfaces that enclose the
antenna under test and that are designed to be more
amenable for the derivation of wide-angle antenna perfor-
mance from measurements made using existing, possibly
smaller, planar near-field measurement facilities. This
technique facilitates a reduction in the number of near-field
acquisition points relative to a conventional planar
measurement with an equal angle of validity, while retaining
the mathematical and computational simplicity that is
usually associated with the plane-wave spectrum method
and planar probe pattern correction.Fig. 2 Photograph of face of circular array antenna
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4.1 Biscan auxiliary rotation technique
In general it is difficult to obtain closed-form solutions for
the electromagnetic field at a point in space from knowledge
of the tangential electric or tangential magnetic fields over a
closed surface for anything but the simplest cases. This is
especially true when the closed surface is not coincident and
synonymous with the aperture of the radiating structure, as
is the case for near-field antenna measurements. As such,
recourse to alternative, typically numerical, methods for
verification is unavoidable. To this end the near-field
measurement geometry was simulated using a uniformly
illuminated, purely y-polarised rectangular aperture cut
from an infinitely thin perfectly conducting sheet that is
coincident with the z¼ 0 plane and centred at the origin of
the co-ordinate system. As the sheet is perfectly conducting
the electric field outside the aperture will be exactly zero.
Hence the boundary conditions may be expressed as

f ðx; yÞ ¼ E0 when xj j � a and yj j � b
0 elsewhere

�
ð2Þ

These simulated fields were transformed using the field
equivalence principle to construct the surface of a partial
plane, initially parallel with the x–y plane passing through
the z¼ 1m point. This plane was rotated by 7301 in
azimuth about the origin of the antenna co-ordinate system,
as illustrated in Fig. 4, to construct the field distribution
plotted in Fig. 5, c.f. [7].

Figure 6 is a far-field plot comparing ideal far-field data
and equivalent data derived from the two rotated partial
plane near-field data illustrated. The agreement between the
respective cuts is good with differences only becoming
apparent beyond 7801 where this is particularly apparent
in the phase plot. These differences have been found to
result from the discontinuity encountered at the intersection
of the two planes. Unfortunately with any symmetrical

biscan configuration the intersection between the adjacent
partial scans lies in the region of greatest field intensity.

4.2 Triscan auxiliary rotation technique
The triscan configuration is a practical candidate for a
polyplanar system as the intersection between adjacent
partial scans can be chosen to be away from regions of high
field intensities. To this end the near-field measurement
geometry was simulated using the field equivalence principle
to construct the surface of a partial plane, initially parallel
with the x–y plane. This plane was rotated by 7301 in
azimuth about the origin of the antenna co-ordinate system
to construct the field distribution shown in Fig. 7. This
constitutes a desirable arrangement where the intersections
have been chosen to be across a region of space in which the
field intensities are typically more than 30dB smaller than
the largest signal. Figure 8 contains a great circle cut of the
equivalent far-field vector pattern function compared with
the ideal (theoretical) pattern. Unfortunately these results
can be seen to be in error for very large angles i.e. those
angles greater that 871 and stems from the discontinuity in
the first derivative of the near-field data across the
intersection between the partial scans.

An often-adopted technique for the quantitative compar-
ison of antenna pattern data sets is the calculation of an
equivalent multipath level (EMPL). This can be thought of
as the amplitude necessary to force the different pattern
values to be equal. Thus, it can be seen from Fig. 9 that the
equivalent multipath level everywhere within the maximum
look angle is low with the largest value being less than
�60dB and the value being typically less than �70dB over
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Fig. 4 Schematic representation of aligned and misaligned
antennas
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the majority of the forward hemisphere which is approach-
ing the practical noise floor of a typical planar facility.

The extent of the differences between the respective far-
field patterns can be quantified with the evaluation of the
coefficient of ordinal correspondence k. This is a single
coefficient, independent of scaling or shift due to the
differences in reference levels, derived from ordinal statistics,
details of which can be found in [8]. Table 1 contains values
of k that correspond to a conventional planar configuration,
a biscan auxiliary rotation scheme (two planes inclined at
7301 and where the intersection is through the middle of
the antennas peak field) and the modified triscan auxiliary
rotation scheme. Here, if the two data sets are perfectly
correlated, then k¼ 1, when the data sets are perfectly
negatively correlated then k¼�1 and when no relationship
exists the magnitude of k tends to zero.

The conventional planar measurement can be thought of
as constituting the benchmark by which other novel
schemes can be compared. The imperfect k value reflects
the degradation of the far-field pattern that inevitably
results from the introduction of spectral leakage caused by
truncation of the near-field data set. Although the biscan
configuration successfully increases the ability of a given
facility to determine wide-out antenna performance, addi-
tional errors are introduced that result from the intersection
of the partial scans. Clearly the triscan scheme can be seen
to offer results that constitute an overall improvement to
those supplied by conventional planar techniques.

The triscan scheme addresses the problem of obtaining
wide-out azimuthal performance, but does not address the
problem in the elevation plane. This can be readily resolved
by rolling the AUT through 7901 about its mechanical
boresight and repeating the measurement. This would not
be suitable for all antennas and alternatively the AUT can
be ‘nodded’ in elevation, then permitting data to be sampled
over the surface of two additional planes. This procedure
yields a polyplanar measurement consisting of five inter-
secting partial scans that when combined produce a
sampling surface that resembles a flat-topped pyramid.
Inspecting the degree of agreement for the pentahedral scan
is now found to be encouraging with differences only
becoming apparent at the �70dB level or for a large polar
angle. Table 1 further illustrates the degree of success of this
technique with the pentahedral auxiliary rotation scheme
offering the best performance. This technique is particularly
applicable for instruments with a rectangular aperture plane
as little power is delivered to intercardinal regions. For
circularly symmetrical instruments, further validation is
required.

4.3 Reconstruction of normal field
component
Conventionally the normal field components are not
measured, instead they are recovered from the tangential
components via an application of the plane wave condition,
i.e. k � E ¼ 0. If however, the sampled data set is truncated,
the reconstructed normal field component will be in error.
This is clearly a problem as partial scans are by definition
truncated. Furthermore, this field component is required
before the partial data sets can be combined, as the
principal of superposition requires that each component be
resolved onto the SAME polarisation basis. These difficul-
ties can be resolved if the normal field component is sought
over the surface of each partial plane. All three orthogonal
field components can then be transformed to the far field
whereupon the partial data sets can be combined in the
usual way. Thus the normal field component over the
partial scan plane can be expressed mathematically as

Ezðx; yÞ ¼ �I�1
kxI Exðx; yÞf g þ kyI Eyðx; yÞ

� �
kz

� �
ð3Þ

where I represents the 2-D Fourier transform of the near

field on a plane and I�1 its inverse. Using the simulator the
normal field component was obtained from the tangential
components and results from this comparison can be found
in Fig. 10a. The spurious high-frequency ripple present in
the reconstructed normal field component can be removed
by windowing the tangential field components before
transforming to the angular spectrum. The ‘convoluted’
normal spectral component can be obtained directly from
the plane-wave condition whereupon it can be inversely
transformed to obtain the ‘windowed’ normal field
component. The windowing function can then be divided
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Table 1: Comparison k-values from various measurement
configurations

Measurement k

Conventional planar measurement 0.6372

Biscan auxiliary rotation scheme 0.5333

Triscan auxiliary rotation scheme 0.8088

Pentahedral-scan auxiliary 0.8154
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out to obtain reliable results such as those presented in
Fig. 10b. The derivation of the expressions that are used to
correct the measured near-field data for the directive
properties of the measuring probe relied on the validity of
the plane-wave condition. Thus the normal field component
utilised implicitly within these expressions will be recovered
erroneously for the case where the near-field data set is
truncated. Thus truncated measurements that are corrected
with these expressions will also be in error. Again, such
difficulties can be avoided with the application of a suitable
windowing function. A proof of the validity of the use of
windowing functions to obtain reliable longitudinal field
components can be found presented in the Appendix. Using
a similar approach a proof demonstrating the validity of the
use of windowing functions when applying probe pattern
correction can be obtained.

Various windowing functions have been tried and the
best results have been obtained by utilising a Bartlett [9] i.e.
a triangular, windowing function. At the extremities, this
technique gradually becomes susceptible to noise and at the
perimeter suffers from a divide by zero error. This can be
overcome by over-scanning the data where adjacent planes
join. Figure 11 shows a far-field copolar azimuth cut for a
representative triscan auxiliary rotation configuration for a
0, 5, and 20 column over-scan configuration. Clearly, the

over-scan configurations improve the quality of the results
obtained. This is most observable at wide angles, however
an over-scan of greater than five columns appears to offer
only a very limited improvement.

Within the most general integral transform derivation of
the plane-wave spectrum (PWS) representation of electro-
magnetic fields [10], the partial derivatives of the boundary
conditions with respect to the x-axis are obtained using the
following operator substitution:

@u x; y; zð Þ
@x

¼ I�1 �jkxI u x; y; zð Þf gf g ð4Þ

A similar expression can be obtained for the y partial
derivative, and higher-order derivatives were obtained by
successive applications of these operator substitutions.
These expressions were assumed to hold everywhere and
were employed to reduce the scalar Helmholtz equation,
which is a second-order partial differential equation, to an
ordinary differential equation. Unfortunately, if the bound-
ary conditions are only piecewise smooth the integration by
parts performed within the derivation of these operator
substitutions becomes impossible. The implication of this is
that the function must be considered as a distribution, i.e.
a generalised function, and crucially, any derivatives must
also be considered as generalised derivatives. This can be
easily demonstrated as the far electric field in a half-space at
stationary points of the first kind can be obtained rigorously
using spectral techniques from near-field data sampled over
a nonplanar aperture using [11]

EðrûÞ ¼j
e�jk0r

lr

Z 1
�1

Z 1
�1

Eðx; y; zÞejk0ðaxþbyþgzÞðû � n̂Þ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@g
@x

� �2

þ @g
@y

� �2

þ1

s
dxdy ð5Þ

Here the surface profile is expressed as a function of the
plaid, monotonic, and equally spaced co-ordinates x and y
where gðx; y; zÞ ¼ z� f ðx; yÞ ¼ 0, n̂ is the outward facing
unit normal to the surface of integration and û ¼ aêx þ
bêy þ gêz is the unit vector in the direction of the stationary

point. Here, provided the fields are sampled at, or
preferably higher than, the Nyquist rate over the sampling
surface, and provided the surface of integration is smooth,
i.e. the function describing the surface profile, and all of the
first partial derivatives are continuous, reliable far-field data
can be obtained. However, as soon as the surface profile is
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not smooth, as is the case for the polyplanar technique,
a spurious high-frequency ripple can be observed. The
amplitude of this ripple is dependent on the magnitude of
the ordinary discontinuity and the intensity of the field in
that region. Although useful for electromagnetic modelling,
and illustrating the difficulties inherent within the PWS
method, these expressions are not in a form that is
applicable for near-field antenna measurements as no
provision is made for probe pattern correction.

5 Polyplanar transformation algorithm

A certain degree of success has been obtained by acquiring
near-field data over the surface of a flat-topped pyramid.
Here the intersection between adjacent scans can be chosen
to be regions of lower field intensities, and the angle
between scans could be made to be small typically a few
tens of degrees. However, in principle, these techniques only
minimise but do not remove the error inherent within the
transformation technique. Consequently an alternative
technique that better handles discontinuities in the sampling
surface was sought. To this end the Kirchhoff–Huygens
(KH) formula was utilised [12]. This method essentially
constitutes a direct integration of Maxwell’s equations with
the use of a vector Green’s theorem. The choice of the field
form of this method was thought to be preferable in this
case as, although an equivalent surface electric and surface
magnetic current form of the KH formula exists and is
widely used, the quantities that are sampled within the
measurement are proportional to fields, not surface
currents. Despite the fact that the KH method has been
utilised here, in theory any field propagation formula could
be employed provided that it can be used with fields
sampled over surfaces that are not smooth. Unfortunately,
in addition to being computationally more intensive than
the spectral method, the KH method requires that both the
electric and magnetic fields be known over the sampling
surface. Thus the filtered probe corrected PWS method can
be utilised to correctly recover the normal component of the
electric field and the magnetic field components can be
reconstructed over each of the partial scans. When
combined these partial scans form a conceptual finite but
unbounded surface that encloses all of the current sources.
This data can then be transformed to the far field using the
KH method. Figure 12 shows a block diagram of the novel
hybrid spectral physical optics transformation algorithm.

6 Experimental verification

The fully absorber lined facility used to verify the technique
contains a planar positioner of an inverted-T design
fabricated by Near-Field Systems Inc. (NSI). This design
was chosen so that the scattering cross-section of the frame
could be minimised. The relatively small physical dimen-
sions of the scan plane, approximately 1m2, enable the
planarity of the scanner to be maximised. Other advantages
include minimising the length of the RF cabling within the
facility. As highly phase-stable cable is often relatively lossy
at 1dBm�1 the short length of the cable runs enables the
dynamic range of the facility to be maximised, which is
crucial when the AUT is not nominally aligned to the axes
of the range. Since the scanner is small and light it is also
very fast with a maximum scan speed of 0.5m/s thus
acquisition times are short, typically of the order of a few
minutes, so very little thermal drift is present within a given
acquisition. The RF subsystem is based around an HP8720
vector network analyser.

In an attempt to verify the polyplanar measurement and
transformation methodologies a cubic geometry was
adopted, as the orthogonality between adjacent partial
scans would constitute a worst-case scenario while being
relative simple to realise. The AUT positioner was
fabricated from a thin absorber-clad steel column on which
the AUT could be mounted precisely in one of six discrete
orientations. A relatively low-gain x-band corrugated horn
was chosen as the AUT as this class of antenna is
conventionally thought to be unsuitable for characterisation
by planar techniques.

With the antenna operating at 10GHz, the x- and y-
polarised electric field components were sampled using a
square acquisition window of �0.425mrxRFSyRFSr
0.425m with a range length, i.e. an AUT-to-probe
separation of 0.282m. Since the intention was that the
tangential components of the near electric field were to be
sampled over the surface of a cube, this corresponded to an
over scan of 12 elements, i.e. approximately six wavelengths,
around the perimeter of the square acquisition window.
Once the x- and y-polarised near-field components had
been sampled the AUT was rotated by 901 in azimuth so
the second side of the cube could be measured. All six
surfaces of the cube were sampled by performing the
following rotations: AUT nominally aligned to axes of
range; positive rotation of 901 about y-axis; negative
rotation of 901 about y-axis; positive rotation of 1801 about

read in tangential field components for 
partial scan

convert polar amplitude and phase to
rectangular I and Q 

apply windowing function to tangential field 
components

transform to far field using two- 
dimensional fast fourier transform.

apply probe pattern correction to
tangential spectral field components. 

calculate normal electric
and magnetic field components. 

inverse transform all field components to
near-field using 2D-IDFT.

remove windowing function and truncate
data to desired sampling interval. 

change polarisation basis from range 
system to antenna system. 

use pointwise continuity theorem to handle
intersection of partial planes

transform to far-field using 
Kirchhoff-Huygens method

use principal of superposition to
combine partial data sets. 

resolve far-field pattern onto desired
polarisation basis, e.g. Ludwig definition 3.

write data to disc and post-process.

calculate magnetic fields if required.

inverse transform to aperture plane if
required.

Fig. 12 Block diagram of auxiliary rotation near-field to far-field
transform algorithm
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y-axis; positive rotation of 901 about z-axis followed by a
positive rotation of 901 about new x-axis; and positive
rotation of 901 about z-axis followed by a negative rotation
of 901 about new x-axis. The requirement for the inclusion
of the back plane follows from the requirement to perform
the pattern integration over a closed surface. Although
utilising the line charge distribution method [13], often
referred to as the Kirchhoff–Kottler formulation, can ease
these difficulties this technique has not yet been implemen-
ted. In practice, it is not possible as a degree of truncation
will inevitably result from the positioning system; this
example was chosen to verify the transformation process
rather than the measurement process.

Each of the six partial scans were processed using the
novel transformation algorithm described. The y-polarised
electric nearfield can be found plotted in Fig. 13 and as
expected the fields at the intersection between adjacent
partial scans are continuous. Similarly encouraging results
were obtained for other polarisations and for the magnetic
fields. These data sets were subsequently transformed to the
farfield and resolved onto a Ludwig III polarisation basis.
Great-circle cardinal cuts are shown in Fig. 14. Here, the
black traces represent patterns obtained from the poly-
planar technique while the dashed traces denote results
obtained from the Queen Mary compact antenna test range
(CATR) [14]. The high-frequency oscillatory behaviour
evident within the azimuth cut of the CATR at wide angles
is a result of a multiple reflections within the facility and
should be ignored.

As described previously, the six partial planes will not
intersect perfectly, and the adverse effects of reflections from
scatters within the NF chamber will degrade the resulting
far-field patterns. Corrugated horns are renowned for their
symmetry. Consequently lack of symmetry can often be
used as an indication that a measurement is unreliable.
Here, although a good degree of symmetry can be observed
in the azimuth plane, the elevation cut clearly contains a
number of asymmetries. This difference between the
cardinal cuts is most probably an artefact of additional
rotation required to sample the top and bottom planes of
the cube, as the additional 901 rotation will inevitable
introduce further alignment errors. As the AUT is located
at the centre of a conceptual measurement cube, classically
the angle of validity for the front plane would be 7451 in

azimuth and elevation. Thus particular attention should be
paid to regions around 7451 as if the transformation were
in error, this is where it would be expected to be most
noticeable. Crucially no discernible divergence is observable
in this region. Finally, the radial component of the far
electric and magnetic fields were calculated. As expected
these components were found to be reassuringly small with
a peak signal of approximately 150dB below the copolar
peak.

7 Conclusions

The measurement process still requires a great deal of
refinement. However, for the first time, encouraging results
that are free from the high-frequency spurious ripples that
have plagued all previous attempts have been obtained.
Thus it would appear that probe corrected spectral
techniques could be combined with the KH method to
form a hybrid technique that alleviates the deficiencies that
render these techniques useless when used individually. This
paper has shown through numerical simulation and
experimental measurement that a flat-topped pyramid
provides a possible solution to the measurement of high-
gain antenna patterns in the forward hemisphere using a
planar scanner of size of order 1.5 times the size of the
radiating aperture. Additionally it has been shown that by
enclosing a medium-gain antenna (e.g. a corrugated horn)
within an imaginary box and measuring the near field on all
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six sides of the box, using a suitable rotation of the AUT,
a prediction of the full spherical radiation pattern of the
antenna can be obtained.
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10 Appendix: Plane-wave condition

The normal field component is obtained from the tangential
field components by applying the plane-wave condition to
the far-field electric field or to the angular spectra

En ¼ �
kt � Et

kn
ð6Þ

where En is the electric field component at a normal to the
measurement plane, and kn is the component of the
propagation vector that is normal to the measurement
plane. Similarly, Et is the component of the electric field
vector that is tangential to the measurement plane. This will
be successful if the near-field data set is free from truncation.
If however the sampled data set is truncated, and by
definition partial scans are truncated, then the reconstructed
normal field component will be in error. These difficulties
can be resolved if the normal field component is sought only
over the surface of each partial plane as windowing
functions can be utilised while maintaining the integrity of
the underlying function.

The normal field component over the partial scan plane
can be expressed mathematically as

Ezðx; yÞ ¼ �I�1
kxI Exðx; yÞf g þ kyI Eyðx; yÞ

� �
kz

� �
ð7Þ

Here I is taken to denote the Fourier operator and I�1 its
inverse. For example, with the time dependency suppressed,
a two-dimensional Fourier transform of the field function
can be defined by the integral

F ðkx; kyÞ ¼I Eðx; yÞf g

¼
Z 1
�1

Z 1
�1

Eðx; yÞejðkxxþky yÞdxdy ð8Þ

Similarly, the inverse can be expressed as

Eðx; yÞ ¼ I�1 F ðkx; kyÞ
� �

¼ 1

4p2

Z 1
�1

Z 1
�1

F ðkx; kyÞe�jðkxxþky yÞdkxdky ð9Þ

Here E and F are vector analytic functions and the limits of
integration collapse to the region of the partial scan plane
for the spatial field function and to the region of visible
space, i.e. where k204k2x þ k2y , for the spectral field function.

The near-field data set is first windowed before it is
transformed to the angular spectrum. The normal field
component is obtained by applying the plane-wave condi-
tion before the inverse transform is taken whereon the
windowing function can be removed from the normal
component. This can be proved as follows.

The derivation aims to establish analytically that the
normal field component can be obtained from the
tangential field components when the angular spectrum is
disturbed by the presence of an arbitrary, but known,
windowing function. The plane-wave condition can be
expressed in terms of the angular spectra as

Fzðkx; kyÞ ¼ �
a
g

Fxðkx; kyÞ �
b
g

Fyðkx; kyÞ ð10Þ

Here a, b and g are the direction cosines in the x-, y- and
z-axes, respectively, so that û ¼ aêx þ bêy þ gêz where û
is a unit vector which is simply related to the direction of
propagation k ¼ kxêx þ kyêy þ kzêz ¼ k0ðaêx þ bêy þ gêzÞ.
Consider the effect of applying a windowing function to
each electric field component in the near field on the plane-
wave condition in the angular spectrum

Exrðx; yÞ ¼ wðx; yÞExðx; yÞ ð11Þ

Eyrðx; yÞ ¼ wðx; yÞEyðx; yÞ ð12Þ

Ezrðx; yÞ ¼ wðx; yÞEzðx; yÞ ð13Þ

Here the subscript r is used to denote a spatially windowed
quantity. Thus by using the convolution theorem [4] the
plane-wave condition when expressed in terms of windowed
electric near-field components becomes

W ðkx; kyÞ � Fzðkx; kyÞ ¼ �
a
g

W ðkx; kyÞ � Fxðkx; kyÞ
� 	

� b
g

W ðkx; kyÞ � Fyðkx; kyÞ
� 	

ð14Þ

Here the spatial and spectral windowing functions, w and
W respectively, are related through the Fourier operator.
Hence

Fzrðkx; kyÞ ¼ �
a
g

Fxrðkx; kyÞ �
b
g

Fyrðkx; kyÞ ð15Þ
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where

Fxrðkx; kyÞ ¼I Exrðx; yÞf g
¼I wðx; yÞExðx; yÞf g
¼W ðkx; kyÞ � Fxðkx; kyÞ ð16Þ

Similar expressions can be formed for Fyr and Fzr. Thus

Fzrðkx; kyÞ ¼ �
a
g
I wðx; yÞExðx; yÞf g

� b
g
I wðx; yÞEyðx; yÞ
� �

ð17Þ

Hence the reconstructed normal component can be
expressed reconstructed from

Ezðx; yÞ ¼
1

wðx; yÞI
�1

� � a
g
I wðx; yÞExðx; yÞf g

�

� b
g
I wðx; yÞEyðx; yÞ
� �� ð18Þ

This holds for any windowing function that is both
absolutely integrable and non-zero.
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